All functions

add_u()

Add confounder variables and their instruments

allele_frequency()

Estimate allele frequency from SNP

arbitrary_map()

Create an arbitrary map

ascertain_samples()

Ascertain some proportion of cases and controls from binary phenotype

choose_effects()

Get vector of effects that explain some amount of variance

contingency()

Obtain 2x2 contingency table from marginal parameters and odds ratio

correlated_binomial()

Simulate two correlated binomial variables

create_system()

Wrapper for simulation pipeline

estimate_system_effects()

Estimate the effects of all SNPs on all phenotypes

expected_mse()

Calculate expected MSE

expected_se()

Expected se given beta, af, n and vy

expected_ssx()

Calculate expected SSX

fast_assoc()

Get summary statistics in simple linear regression

generate_gwas_params()

Generate SNP effects given MAF, h2 and selection

generate_gwas_ss()

Modify SNP effects to account for LD

generate_gwas_ss_1()

Create a GWAS summary dataset

generate_ldobj()

Generate LD matrix objects from reference panel

get_effs()

Get effs for two traits and make dat format

get_ld()

Get LD matrix for a specified region from bfile reference panel

get_population_allele_frequency()

Estimate the allele frequency in population from case/control summary data

get_regions_from_ldobjdir()

Determine regions from LD file

gwas()

Perform association of many SNPs against phenotype

gx_to_gp()

Translate risk from liability to probability scale

hap_freqs()

Estimate haplotype frequencies for two loci

init_parameters()

Choose initial parameters for direct effects on X and Y

ldetect

Data frame of independent LD regions

lor_to_rsq()

Estimate proportion of variance of liability explained by SNP in general population

make_geno()

Create genotype matrix

make_mvdat()

Take several exposures and one outcome and make the data required for multivariable MR

make_phen()

Simulate variable based on the influences of other variables

merge_exp_out()

Organise outputs from gwas into harmonised dat format

range01()

Scale variable to have range between 0 and 1

read_ldobjdir()

Read in LD objects into list

recode_dat()

Recode data to make every effect on x positive

recode_dat_intercept()

Intercept recoding to have every effect on x positive

recode_dat_simple()

Simple recoding to have every effect on x positive

risk_cross_plot()

Plot liability vs probability disease risk

risk_simulation()

Make simulation to compare disease and liability scales

sample_beta()

Sample beta values given standard errors

sample_system_effects()

Sample the actual effects based on initial parameters

simulateGP-package simulateGP simulategp

simulateGP: Functions for Simulating Genotype-Phenotype Relationships

simulate_geno()

Simulate genotypes from haplotypes

simulate_haplotypes()

Simulate haplotypes of two loci

simulate_population()

Simulate individual level data from initial parameters

stuff

General funcs

summary_set()

Wrapper for generating a summary set

test_ldobj()

Create test LD object

test_system()

Apply MR tests to system

y_to_binary()

Convert continuous trait to binary