Compare summary level simulations against individual level simulations

ldobj <- readRDS("~/data/ld_files/ldmat/EUR_1kg_hm3/ldobj_chr9_30387392_31310382.rds")
set.seed(1234)
nid <- 100000
params <- ldobj$map %>%
  generate_gwas_params(h2=0.02, Pi=3/nrow(ldobj$map)) %>%
  generate_gwas_ss(nid, ldobj=ldobj)

X <- MASS::mvrnorm(nid, rep(0, nrow(ldobj$ld)), ldobj$ld)
for(i in 1:ncol(X))
{
    X[,i] <- X[,i] * sqrt(2 * ldobj$map$af[i] * (1-ldobj$map$af[i]))
}

Xb <- X %*% params$beta
y <- Xb + rnorm(nid, sd=sqrt(1 - var(Xb)))
out <- gwas(y, X)
plot(cor(X), ldobj$ld)
plot(out$bhat ~ params$bhat)

Run SuSIE

sus <- susieR::susie_rss(params$bhat/params$se, R = ldobj$ld, check_R=FALSE)
susieR::susie_plot(sus, y="PIP", b=params$beta)
sus$sets

sui <- susieR::susie_rss(out$bhat / out$se, R = ldobj$ld, check_R=FALSE)
susieR::susie_plot(sui, y="PIP", b=params$beta)
sui$sets

Compare two different populations

ldobj1 <- readRDS("~/data/ld_files/ldmat/EUR_1kg_hm3/ldobj_chr22_26791628_27834751.rds")
ldobj2 <- readRDS("~/data/ld_files/ldmat/EAS_1kg_hm3/ldobj_chr22_26524344_28233389.rds")

snps <- ldobj1$map$snp[ldobj1$map$snp %in% ldobj2$map$snp] 
index1 <- which(ldobj1$map$snp %in% snps)
index2 <- which(ldobj2$map$snp %in% snps)
ldobj1$map <- ldobj1$map[index1,]
ldobj1$ld <- ldobj1$ld[index1, index1]
ldobj2$map <- ldobj2$map[index2,]
ldobj2$ld <- ldobj2$ld[index2, index2]
length(snps)

set.seed(1111)
nid <- 100000
params1 <- ldobj1$map %>%
  generate_gwas_params(h2=0.02, Pi=3/nrow(ldobj1$map)) %>%
  generate_gwas_ss(nid, ldobj=ldobj1)

params2 <- ldobj2$map %>%
    mutate(beta = params1$beta) %>%
    generate_gwas_ss(nid, ldobj=ldobj2) 

bind_rows(params1 %>% mutate(pop="EUR"), params2 %>% mutate(pop="EAS")) %>%
    ggplot(., aes(x=pos, y=-log10(pval))) +
    geom_point(aes(colour=beta == 0)) +
    facet_grid(pop ~ .)

Run SuSIE

su1 <- susieR::susie_rss(params1$bhat/params1$se, R = ldobj1$ld, check_R=FALSE)
susieR::susie_plot(su1, y="PIP", b=params1$beta)
su1$sets

su2 <- susieR::susie_rss(params2$bhat/params2$se, R = ldobj2$ld, check_R=FALSE)
susieR::susie_plot(su2, y="PIP", b=params2$beta)
su2$sets