If a set of SNPs have some effect on y, and those SNPs are correlated, can we calculate the expected marginal effect sizes?

\[ \textbf{y} = \textbf{Xb} + \textbf{e} \]

Intercept ignored for simplicity, so the genotyped matrix \(\textbf{X}\) needs to be centered by subtracting the mean genotype value (\(2p_j\)) from each genotype.

Linear regression is solved by:

\[ \hat{\textbf{b}} = \textbf{(X'X)}^{-1}\textbf{X'y} \]

where

\[ var(\hat{\textbf{b}}) = \sigma^2_j (\textbf{X'X})^{-1} \]

and \(\sigma^2_j\) is the residual variance given by

\[ (1-R^2)var(y) \]

and

\[ R^2 = \frac{\hat{\boldsymbol{b}}' \boldsymbol{X}'\boldsymbol{y} \boldsymbol{\hat{\beta}}}{var(y)} \]

We can obtain the causal effects from the marginal estimates using:

\[ \boldsymbol{\hat{b}} = \boldsymbol{(X'X)^{-1}D\hat{\beta}} \]

Where \(\boldsymbol{D}\) is the diagonal matrix of \(\boldsymbol{X'X}\) (i.e. the sums of squares for each of the SNPs).

Therefore, to generate a set of marginal estimates from a given set of causal effects and a set of correlated SNPs:

\[ \boldsymbol{\hat{\beta}} = \boldsymbol{\hat{b}X'XD^{-1}} \]

We would like to generate this just from a correlation matrix, rather than \(\boldsymbol{X'X}\) which is the matrix of the sums of squares of X. Given that

\[ \rho_{jk} = \frac{\sum^n{ x_j x_k}}{\sqrt{\sum^n{x_j^2}\sum^n{x_k^2}}} \]

We can generate the \(\boldsymbol{X'X}\) matrix by first calculating the sums of squares of each of the SNPs such that, which is represented in the diagonal matrix \(D\)

\[ D_{j,j} = \sum^n{x_j} = 2p_j(1-p_j)n \]

and re-writing X’X as

\[ \boldsymbol{X'X} = \boldsymbol{\rho} \sqrt{\boldsymbol{D}} \]

Finally

\[ \boldsymbol{\beta} = \boldsymbol{D^{-1/2}} \boldsymbol{\rho} \boldsymbol{D^{1/2}} \boldsymbol{b} \]

To generate the standard errors we need to allow for the sampling variance of each neighboring SNP to be correlated, such that

\[ \boldsymbol{Cov(\hat{\beta})} = \boldsymbol{S} \boldsymbol{\rho} \boldsymbol{S} \]

Where S is a diagonal matrix of expected marginal standard errors for each SNP.

calcs <- function(x, y, b)
{
    xpx <- t(x) %*% x
    D <- matrix(0, ncol(x), ncol(x))
    diag(D) <- diag(xpx)
    betahat <- gwas(y, x)$bhat
    bhat <- drop(solve(xpx) %*% D %*% betahat)
    betahatc <- b %*% xpx %*% solve(D) %>% drop
    rho <- cor(x)
    betahatrho <- b %*% rho %>% drop
    tibble(b, bhat, betahat, betahatc, betahatrho)
}

n <- 10000
nsnp <- 20
sigma <- matrix(0.7, nsnp, nsnp)
diag(sigma) <- 1
x <- rmvnorm(n, rep(0, nsnp), sigma)

b <- rnorm(nsnp) * 100
y <- x %*% b + rnorm(n)
res <- calcs(x, y, b)

plot(res$b ~ res$bhat)
plot(res$betahat ~ res$betahatc)
plot(res$betahat ~ res$betahatrho)

This works well. Now try with two correlated binomial variables

nsnp <- 2
x <- simulateGP:::correlated_binomial(n, 0.3, 0.3, 0.7)
b <- rnorm(nsnp)
y <- x %*% b + rnorm(n)
res <- calcs(x, y, b)
res

Not working so well now. Try scaling

x <- simulateGP:::correlated_binomial(n, 0.3, 0.3, 0.7) %>% scale
b <- rnorm(nsnp)
y <- x %*% b + rnorm(n)
res <- calcs(x, y, b)
res

This works - it’s because there is no intercept term in the model!

Now try with LD reference panel data

read_x <- function(variants, bfile, plink_bin=genetics.binaRies::get_plink_binary())
{
    # Make textfile
    shell <- ifelse(Sys.info()['sysname'] == "Windows", "cmd", "sh")
    fn <- tempfile()
    write.table(data.frame(variants), file=fn, row.names=F, col.names=F, quote=F)

        fun1 <- paste0(
        shQuote(plink_bin, type=shell),
        " --bfile ", shQuote(bfile, type=shell),
        " --extract ", shQuote(fn, type=shell), 
        " --recode A ", 
        " --out ", shQuote(fn, type=shell)
    )
    system(fun1)

    x <- data.table::fread(paste0(fn, ".raw")) %>% {.[,-c(1:6)]} %>% as.matrix()
    unlink(paste0(fn, ".raw"))
    return(x)
}

greedy_remove <- function(r)
{
    diag(r) <- 0
    flag <- 1
    rem <- c()
    nom <- colnames(r)
    while(flag == 1)
    {
        message("iteration")
        count <- apply(r, 2, function(x) sum(x >= 0.99))
        if(any(count > 0))
        {
            worst <- which.max(count)[1]
            rem <- c(rem, names(worst))
            r <- r[-worst,-worst]
        } else {
            flag <- 0
        }
    }
    return(which(nom %in% rem))
}

pop <- "EUR"
ldref <- paste0("/Users/gh13047/repo/mr-base-api/app/ld_files/", pop)
bim <- data.table::fread(paste0(ldref, ".bim"))
regionfile <- paste0("/Users/gh13047/repo/gwasglue/inst/extdata/ldetect/", pop, ".bed")
regions <- data.table::fread(regionfile, header=TRUE) %>%
    dplyr::mutate(
        chr=as.numeric(gsub("chr", "", chr)),
        start=as.numeric(start),
        stop=as.numeric(stop)
    ) %>% dplyr::as_tibble()
region1 <- subset(bim, V1 == regions$chr[1] & V4 > regions$start[1] & V4 < regions$stop[1])$V2

x <- read_x(region1, ldref)[,1008:1030]

When calculating causal effects from marginal effects need to invert the correlation matrix. To avoid matrix being singular, remove any correlations that are >= 0.99

r <- cor(x)
rem <- greedy_remove(r)
x <- x[,-rem]
# x <- scale(x)
normalise_x <- function(x)
{
    p <- colMeans(x)
    t(t(x) - p)
}
xn <- normalise_x(x)
xs <- scale(x)

colMeans(xn)
colMeans(xs)
colMeans(x)
apply(x, 2, var)
apply(xn, 2, var)
apply(xs, 2, var)
xo <- x
x <- xn
x <- xs
x <- xo

Simulate

n <- nrow(x)
nsnp <- ncol(x)
b <- rnorm(nsnp) * 100
y <- x %*% b + rnorm(n)
res <- calcs(x, y, b)
res

plot(res$b ~ res$bhat)