library(randcorr)
library(exvatools)
library(microbenchmark)
<- randcorr(2000)
rho hist(rho)
<- diag(runif(2000))
S
<- S %*% rho %*% S
se1 <- multd(dmult(S, rho), S)
se2
cor(c(se1), c(se2))
[1] 1
Gibran Hemani
March 20, 2025
The standard error in a region is
\[ cov(\hat{\beta}) = S \rho S \]
where \(S\) is the diagonal matrix of standard errors, \(\rho\) is the LD correlation matrix.
Quite slow to calculate, how to speed it up?
[1] 1
Warning in microbenchmark(se1 <- S %*% rho %*% S, se2 <- multd(dmult(S, : less
accurate nanosecond times to avoid potential integer overflows
Unit: milliseconds
expr min lq mean median
se1 <- S %*% rho %*% S 5246.6404 5371.90881 5540.00547 5414.32240
se2 <- multd(dmult(S, rho), S) 60.4561 86.70983 90.28943 95.21467
uq max neval cld
5784.9195 5882.2362 5 a
102.2686 106.7979 5 b
R version 4.4.3 (2025-02-28)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.6.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/London
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.5.0 exvatools_0.9.0 randcorr_1.0
loaded via a namespace (and not attached):
[1] cli_3.6.3 knitr_1.48 rlang_1.1.4 TH.data_1.1-2
[5] xfun_0.48 jsonlite_1.8.9 zoo_1.8-12 htmltools_0.5.8.1
[9] rmarkdown_2.27 grid_4.4.3 evaluate_1.0.1 MASS_7.3-64
[13] fastmap_1.2.0 yaml_2.3.10 mvtnorm_1.2-5 compiler_4.4.3
[17] multcomp_1.4-26 codetools_0.2-20 sandwich_3.1-1 htmlwidgets_1.6.4
[21] lattice_0.22-6 digest_0.6.37 splines_4.4.3 Matrix_1.7-2
[25] tools_4.4.3 survival_3.8-3