library(purrr)
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Gibran Hemani
January 21, 2025
Is it possible to estimate the environmental factor using the GxE interaction term? In this model the genetic effect is masked unless individuals experience a particular environment. Stratifying individuals by different levels of environmental exposure will give different marginal genetic effects. Can the influence of the environment be recovered from this?
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
fn <- function(n, bap, bm, bi, sim=1) {
args <- list(n=n, bap=bap, bm=bm, bi=bi, sim=sim) %>% as_tibble()
ap <- rbinom(n, 2, 0.5) / 2
g <- rbinom(n, 2, 0.3)
l <- ap * bap + g * ap * bi + rnorm(n)
copd <- rbinom(n, 1, plogis(l))
bhat <- glm(copd ~ g * ap, family="binomial")$coef[4]
args$bhat <- bhat
return(args)
}
fn(100000, 0.3, 0.1, 0.5)
# A tibble: 1 × 6
n bap bm bi sim bhat
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 100000 0.3 0.1 0.5 1 0.439
Untidy sims:
library(dplyr)
library(simulateGP)
n <- 10000
G <- correlated_binomial(n, 0.3, 0.1, 0.5)
dim(G)
cor(G)
lm(G[,1] ~ G[,2])
x <- G[,1] + rnorm(n)
lm(x ~ G[,2])
cor(G) * (sd(G[,1]) / sd(G[,2]))
n <- 100000
ap <- rbinom(n, 2, 0.5) / 2
g <- rbinom(n, 2, 0.3)
b <- 1.2
l <- ap * b + g + g * ap + rnorm(n)
copd <- rbinom(n, 1, plogis(l))
b0 <- glm(copd ~ g, family="binomial", subset=ap==0)$coef[2]
b1 <- glm(copd ~ g, family="binomial", subset=ap==1)$coef[2]
b2 <- glm(copd ~ g, family="binomial", subset=ap==2)$coef[2]
b0
b1
b2
b2 <- glm(copd ~ g * ap, family="binomial")
fn <- function(n, bap, bm, bi, sim=1) {
args <- list(n=n, bap=bap, bm=bm, bi=bi, sim=sim) %>% as_tibble()
ap <- rbinom(n, 2, 0.5) / 2
g <- rbinom(n, 2, 0.3)
l <- ap * bap + g * ap * bi + rnorm(n)
copd <- rbinom(n, 1, plogis(l))
bhat <- glm(copd ~ g * ap, family="binomial")$coef[4]
args$bhat <- bhat
return(args)
}
param <- expand.grid(
n=100000,
bap=c(0.1, 0.3, 0.5),
bm=c(0, 0.1),
bi=c(0.1, 0.3, 0.5),
sim=1:5
)
fn(100000, 0.3, 0.1, 0.5)
library(purrr)
res <- pmap(param, fn)
library(ggplot2)
res %>%
bind_rows() %>%
ggplot(aes(bap, bhat, color=factor(bi))) +
geom_point()
R version 4.4.3 (2025-02-28)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.6.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/London
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dplyr_1.1.4 ggplot2_3.5.1 purrr_1.0.2
loaded via a namespace (and not attached):
[1] vctrs_0.6.5 cli_3.6.3 knitr_1.48 rlang_1.1.4
[5] xfun_0.48 generics_0.1.3 jsonlite_1.8.9 labeling_0.4.3
[9] glue_1.8.0 colorspace_2.1-1 htmltools_0.5.8.1 scales_1.3.0
[13] fansi_1.0.6 rmarkdown_2.27 grid_4.4.3 evaluate_1.0.1
[17] munsell_0.5.1 tibble_3.2.1 fastmap_1.2.0 yaml_2.3.10
[21] lifecycle_1.0.4 compiler_4.4.3 htmlwidgets_1.6.4 pkgconfig_2.0.3
[25] farver_2.1.2 digest_0.6.37 R6_2.5.1 tidyselect_1.2.1
[29] utf8_1.2.4 pillar_1.9.0 magrittr_2.0.3 withr_3.0.2
[33] tools_4.4.3 gtable_0.3.6