res <-lapply(1:100, \(i) { out <-dgm(10000, 0.3, 0, 0.3, 0, 0.3, 0.3)est(out) %>%mutate(i=i)}) %>%bind_rows()
Re-label
res <- res %>%separate(f, c("trait", "g"), sep=" ~ ", remove=FALSE)res$g[res$g =="g1"] <-"Main"res$g[res$g =="g2"] <-"GxE"res$g[res$g =="g3"] <-"Var"res$g[res$g =="g4"] <-"Null"res$trait[res$trait =="yraw"] <-"yraw"res$trait[res$trait =="y"] <-"Normal liability"res$trait[res$trait =="ysq"] <-"Normal liability squared"res$trait[res$trait =="ysq_norm"] <-"Normal liability squared (INT)"res$trait[res$trait =="l"] <-"Exponentiated liability"res$trait[res$trait =="l_norm"] <-"Exponentiated liability (INT)"res$trait[res$trait =="score"] <-"Poisson of liability"res$trait[res$trait =="score_norm"] <-"Poisson of liability (INT)"res$trait[res$trait =="score_res"] <-"Residuals of Poisson"res$trait[res$trait =="score_res_norm"] <-"Residuals of Poisson (INT)"
Evaluate performance of variance estimates on power and bias. Expect that Main and Null should be null in the MZ difference model, and GxE and Var should be non-null.
`summarise()` has grouped output by 'what', 'f', 'g'. You can override using
the `.groups` argument.
Summary
Inverse rank transformation of most traits rescues the MZ difference model
Inverse rank transformation of the Poisson variable does not seem to work - it erases the variance effects and there is some bias remaining for the main effect