set.seed(1)
<- 0.2
b1 <- 3
b2 <- 4
beta1 <- 5
beta2 <- 10000
n <- rnorm(n)
u <- rnorm(n)
g <- u * beta2 + g * beta1 + rnorm(n)
x <- u * b2 + x * b1 + rnorm(n, sd=0) y
Background
What determines
$$
In OLS the b will be different to the IV b if there is unmeasured confounding
$$$$
and
therefore to get the OLS
Note that
So ultimately if you want to fix
By contrast the variance explained by the causal effect of X is
Check
Beta
cov(x, y)/var(x)
[1] 0.562716
summary(lm(y ~ x))$coef[2,1]
[1] 0.562716
*beta1^2*var(g) + (b1*beta2^2 + b2*beta2) * var(u) ) / var(x) ( b1
[1] 0.5557103
Correlation
*beta1^2*var(g) + (b1*beta2^2 + b2*beta2) * var(u) ) / var(x)) * sd(x) / sd(y))^2 ((( b1
[1] 0.768337
cor(x, y)^2
[1] 0.7878316
sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
time zone: Europe/London
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] htmlwidgets_1.6.3 compiler_4.3.2 fastmap_1.1.1 cli_3.6.1
[5] tools_4.3.2 htmltools_0.5.7 yaml_2.3.7 rmarkdown_2.25
[9] knitr_1.45 jsonlite_1.8.7 xfun_0.41 digest_0.6.33
[13] rlang_1.1.2 evaluate_0.23